Structure of the Autoinhibited Kinase Domain of CaMKII and SAXS Analysis of the Holoenzyme

Oren S. Rosenberg,1,2,3 Sebastian Deindl,1,2,3 Rou-Jia Sung,1,2,3 Angus C. Nairn,6 and John Kuriyan1,2,3,4,*

1 Department of Molecular and Cell Biology
2 Department of Chemistry
3 Howard Hughes Medical Institute
University of California, Berkeley, CA 94720, USA
4 Physical Biosciences Division, Lawrence Berkeley National Lab, Berkeley, CA 94720, USA
5 Department of Cell Biology
6 Department of Psychiatry
Yale University School of Medicine, New Haven, CT 06508, USA
*Contact: kuriyan@berkeley.edu
DOI 10.1016/j.cell.2005.10.029

SUMMARY

Ca2+/calmodulin-dependent protein kinase-II (CaMKII) is unique among protein kinases for its dodecameric assembly and its complex response to Ca2+. The crystal structure of the autoinhibited kinase domain of CaMKII, determined at 1.8 Å resolution, reveals an unexpected dimeric organization in which the calmodulin-responsive regulatory segments form a coiled-coil strut that blocks peptide and ATP binding to the otherwise intrinsically active kinase domains. A threonine residue in the regulatory segment, which when phosphorylated renders CaMKII calmodulin independent, is held apart from the catalytic sites by the organization of the dimer. This ensures a strict Ca2+ dependence for initial activation. The structure of the kinase dimer, when combined with small-angle X-ray scattering data for the holoenzyme, suggests that inactive CaMKII forms tightly packed autoinhibited assemblies that convert upon activation into clusters of loosely tethered and independent kinase domains.

INTRODUCTION

Calcium/calmodulin (Ca2+/CaM)-dependent protein kinase II (CaMKII) is one of the most important transducers of Ca2+ signals in a variety of cell types and is highly conserved across animal species (Hudmon and Schulman, 2002). A fundamental difference between CaMKII, which assembles into a dodecameric holoenzyme, and other CaM-dependent kinases is that CaMKII has the capacity to retain a “memory” of prior activation by Ca2+/CaM because of a two step activation process. In the first step, which is similar to the activation process of the monomeric CaM kinases (Goldberg et al., 1996; Hu et al., 1994; Mayans et al., 1998), Ca2+/CaM removes an autoinhibitory regulatory segment located C-terminal to the kinase domain (Figure 1A). This releases the catalytic activity of the enzyme and makes accessible a regulatory residue, Thr 286 (mouse CaMKII isoform numbering, used throughout the text). The second step is the phosphorylation of Thr 286 by another kinase domain within the oligomeric holoenzyme (Lai et al., 1986; Lou and Schuman, 1989; Miller et al., 1988; Rich and Schuman, 1998; Schwer et al., 1996; Thiel et al., 1998). Phosphorylation of Thr 286 keeps CaMKII active in the absence of Ca2+/CaM by preventing the rebinding of the regulatory segment to the kinase domain (Lai et al., 1986; Miller and Kennedy, 1986; Yang and Schuman, 1999) and by increasing the affinity of CaM for the enzyme by ~13,000-fold (Meyer et al., 1992). Regulated activation (Lisman et al., 2002) and deactivation (Nelson et al., 2005) of the enzymatic activity have both been shown to be important to the physiological function of CaMKII.

C-terminal to the autoinhibitory segment in CaMKII is the “association domain,” which assembles CaMKII into a dodecameric holoenzyme (Gaertner et al., 2004; Morris and Torok, 2001; Woodgett et al., 1983). Once a kinase subunit is activated by Ca2+/CaM, it can phosphorylate adjacent subunits that are also bound to Ca2+/CaM. If the concentration of Ca2+ is high, phosphorylation on Thr 286 will spread rapidly through the holoenzyme, leading to the onset of Ca2+/CaM-independent activity. When the Ca2+ concentration is low, Thr 286 is dephosphorylated before activation can proceed. Little is known at present about how the structure of the holoenzyme controls the acquisition of Ca2+/CaM autonomous activity. Also poorly understood is how the architecture of the holoenzyme prevents the high local
concentration of kinase domains from generating background phosphorylation levels that would interfere with the proper response to Ca$^{2+}$.

The crystal structure of the association domain of mouse CaMKII\textsubscript{a} has been determined and reveals a stacked arrangement of two 7-fold symmetric rings (Hoelz et al., 2003). The formation of 14-membered rather than the expected dodecameric rings by the isolated association domain is a consequence of removing the kinase domains (O.S.R., S.D., L. Comolli, A. Hoelz, K. Downing, A.C.N., and J.K., unpublished data). The fundamental unit of assembly is a dimer of association domains, consisting of one subunit each from the upper and lower rings. The N-terminal segments of each association domain form α helices that are arrayed around the edges of the midplane of the assembly and serve as the connection points for the kinase domains. A model for the dodecameric association-domain ring can be generated by removing one dimeric element from the 14-membered ring and closing the gap while maintaining symmetry (Hoelz et al., 2003; O.S.R., S.D., L. Comolli, A. Hoelz, K. Downing, A.C.N., and J.K., unpublished data).

We describe here the crystal structure of the autoinhibited kinase domain of CaMKII and discuss how it is maintained in an inactive state by the Ca$^{2+}$/CaM responsive regulatory element. An unexpected feature of the structure is the organization of the autoinhibited kinase domains into dimers, in a manner that is suggestive of a mechanism for controlling autophosphorylation within the holoenzyme. Small-angle X-ray scattering (SAXS) analysis suggests that the autoinhibited and dimeric kinase domains are arranged in a ring that is coplanar with and tightly packed against the ring formed by the association domain. Arrangement of the kinase domains in this manner has important consequences for the mechanism by which CaMKII is activated and acquires Ca$^{2+}$/CaM-independent activity.

RESULTS AND DISCUSSION

The Regulatory Segments of CaMKII Form a Dimeric Coiled-Coil Structure

We crystallized the kinase and regulatory domains (residues 1–340, referred to in this text as “the autoinhibited kinase domain”) of Caenorhabditis elegans CaMKII, UNC-43 (all C. elegans constructs described here were derived from the splice variant K11E8.4). The use of an inactive mutant enzyme (Asp 135 Asn) was required for prevention of heterogeneity due to phosphorylation (data not shown). This fragment of C. elegans CaMKII is 77% identical in sequence to the corresponding region of human CaMKII\textsubscript{a} (see Figure S1 in the Supplemental Data available with this article online).
are two structurally similar autoinhibited kinase domains in the asymmetric unit of the crystal (Table S1; Experimental Procedures).

The regulatory segment (residues 273–317) emerges from the base of the kinase domain and runs, at its N-terminal end, through the channel formed between helices αD and αF of the kinase (Figures 1 and 2). It ends in a long α helix. The regulatory segment separates from the main body of the kinase at residue Arg 297, at which point it begins to make hydrophobic interactions with the regulatory helix from the other kinase domain in the asymmetric unit. The CaM binding residues span residues 290 to 314 within the regulatory segment (Figures 1B and 1C; see also Meador et al. [1993]).

The two regulatory helices form a left-handed and antiparallel coiled coil, ending at residue 315 (Crick, 1953; Walshaw and Woolfson, 2001). The region between residues 291 and 320 of CaMKII is predicted to form a coiled coil with a low but significant probability (Lupas et al., 1991). In contrast, the monomeric CaM-dependent kinases show little or no probability of coiled-coil formation in the regulatory segment (Figure S2).

Gel filtration and analytical ultracentrifugation experiments demonstrate that the autoinhibited kinase domain is monomeric in solution at concentrations below ~100 μM (data not shown). Electron microscopic images of the most expanded forms of CaMKII correspond to a cylinder of radius ~100 Å and height ~200 Å (Kolodziej et al., 2000). Using these dimensions, the local concentration of subunits is estimated to be in the range of 3 mM within the holoenzyme. The two elements of the coiled coil are linked to spatially adjacent points on the association domain, which is likely to further strengthen their interaction. At the same time, the coiled coil cannot be so strong that the binding of Ca2+/CaM to it is impeded. It is therefore not surprising that the isolated autoinhibited kinase domains are monomeric at low concentration rather than dimeric.

In order to determine whether the autoinhibited kinase domains interact with one another within the holoenzyme, we compared the binding of fluorescent Ca2+/CaM to C. elegans CaMKII holoenzyme (Asp 135 Asn mutant) and to an isolated autoinhibited kinase domain fragment. The CaMKII holoenzyme binds to Ca2+/CaM with an EC50 value of 145 nM (±12) and with an apparent Hill coefficient of 2.3 (±0.4) (Figure S3). These values are similar to those presented previously for mammalian CaMKII (Gaertner et al., 1996).
The Kinase Domain of CaMKII Is Intrinsically Active but Is Held in an Autoinhibited State

CaMKII does not require phosphorylation for catalytic activity, and the structure of the autoinhibited kinase domain of CaMKII displays many hallmarks of active protein kinases (Nolen et al., 2004; Figure S4A). Nevertheless, the kinase is held in an inactive state by the regulatory segment, which blocks substrate binding (Figure 2).

The affinity of ATP for CaMKII is reduced significantly in the absence of Ca^{2+}/CaM (Colbran, 1993; Hanson and Schulman, 1992; King et al., 1988; Shields et al., 1984). It is surprising, therefore, to find that the regulatory segment of CaMKII avoids the ATP binding site of the N lobe of the kinase. This contrasts with the close interactions seen between the regulatory segment and the ATP binding site in monomeric CaM kinases (Figure 2B). The reduced ATP affinity of autoinhibited CaMKII could be due to a significant change in the orientation of helix αD in the C lobe of the kinase (Figure 3A), which is rotated by 45° and translated by 5 Å with respect to its orientation in active phosphorylase kinase (Lowe et al., 1997). In active kinases, a residue corresponding to Glu 96 in CaMKII coordinates the hydroxyl groups of the ribose ring of ATP (Huang et al., 1995; Lowe et al., 1997). In CaMKII, the regulatory segment causes the rotation of helix αD, which swings Glu 96 away from the ATP binding site. His 282 forms a hydrogen bond with the amide nitrogen in the backbone of Tyr 108 and anchors the D helix in its inactive state (Figure 3A). Mutation of His 282 has been shown experimentally to alter ATP binding to CaMKII (Brickey et al., 1994; Smith et al., 1992). ATP binding to CaMKII may also be weakened by an ~15° outward rotation in the relative orientations of the N and C lobes of the kinase domain that is stabilized by the formation of a network of ionic...
interactions among residues Glu 17, Arg 28, and Glu 38 in the dimer (Figure S4B).

The altered orientation of helix αD has been seen in other inactive CaM kinases (Goldberg et al., 1996; Hu et al., 1994), but structures of both the active and inactive states of the kinase domain are not available for any one member of the CaMK family. We therefore analyzed the consequences of removing the regulatory segment on the orientation of helix αD by using molecular dynamics simulations. Four simulations were generated: one each for the dimer unit and a monomer with the regulatory segment, and two for the kinase-domain monomer without the regulatory segment. Each of these trajectories was calculated for a fully solvated protein using periodic boundary conditions and the program AMBER (Case et al., 2004, University of California, San Francisco) and extends to 9.0 ns, 16.5 ns, 20.0 ns, and 39.2 ns, respectively.

As expected, in the dimer structure and in the monomer with the regulatory domain in place there were no gross changes in the overall conformation. Strikingly, in both of the simulations with the regulatory segment removed, the orientation of helix αD changed after ~10 ns in one simulation and after ~30 ns in the other simulation so that it more closely resembled the conformation seen in active kinases. Glu 96 can now interact readily with the hydroxyl groups of the ribose of ATP (Figures 3B, 3C, and S5). This spontaneous transition into the active conformation suggests that removal of the constraints imposed by the regulatory segment would lead to the ready acquisition of catalytic activity by the kinase domain.

The Critical Phosphorylation Site (Thr 286) Is Held Apart from the Active Sites by the Coiled-Coil Strut
Thr 286, the phosphorylation of which renders the enzyme Ca2+/CaM independent, is buried between the surface of the αD/αF channel and the regulatory segment. The threonine side chain is located almost precisely at the negative pole of the helix dipole of helix αF (Figure 2A), and phosphorylation will clearly destabilize the docking of Thr 286 in the αD/αF channel.

There is a clear spatial separation between the region of the regulatory segment involved in inhibiting the kinase domain (residues 280 to 295 on one face of the helix) and the region that forms the coiled-coil interaction (residues 293 to 317 on the other face of the helix). This implies that a transient release of the regulatory segment from the αD/αF channel of the kinase domain can occur with retention of the coiled-coil interaction, which serves as a strut to keep the two active sites away from either of the Thr 286 sites of phosphorylation (Figure 4A). Likewise, a spontaneous disruption of the coiled-coil interaction would still have the regulatory segment bound to the kinase domain (Figure 4B). Transautophosphorylation would require the simultaneous breakage of the coiled-coil interaction and the release of the autoinhibitory segments from both kinase domains, which appears much less likely without the addition of Ca2+/CaM.

Analysis of Holoenzyme Structure using Small-Angle X-Ray Scattering (SAXS)
Two quite different models have been proposed, based on electron microscopy, to describe the assembly of the CaMKII holoenzyme (Kolodziej et al., 2000; Morris and Torok, 2001). In one model the kinase domains are arranged in a plane around the central ring of the association domain, forming a flattened disc (Morris and Torok, 2001). In the other model the holoenzyme is roughly cylindrical with a height of ~200 Å, and the kinase domains are located above and below the plane of the association-domain ring in an alternating pattern such that they do not interact (Kolodziej et al., 2000).

In order to distinguish between these two models, we made a series of SAXS measurements for full-length C. elegans CaMKII and compared the results to the predicted scattering from a set of model dodecameric holoenzyme structures. The radius of gyration (Rg) of the holoenzyme was determined to be 72 Å from our SAXS data. Six dimeric autoinhibited kinase domains were arrayed around the central...
The reconstruction has a hole in its center with a diameter of ~20 Å, and the 6-fold symmetric model of the association domain can be readily docked into the reconstruction so that it wraps around the hole. Arranged around this central core of the shape reconstruction are six protrusions that extend out parallel to the plane of the association-domain ring. We interpret these protuberances as general indications of the positions of the kinase-regulatory-domain dimers and have docked the holoenzyme model (described above and shown in Figure 6B) into the SAXS shape reconstruction. As the C lobes of the kinases are mainly helical and expected to be more rigid, we speculate that the six stalks arrayed from the central association-domain ring represent two adjacent C lobes, with the intervening weaker features in the shape reconstruction corresponding to pairs of adjacent N lobes. This alternating pattern of electron density is compatible with the two-dimensional reconstructions of Morris and Torok (2001).

We have checked the robustness of these results by carrying out shape reconstructions with 32 symmetry (one 3-fold axis with perpendicular 2-fold axes) instead of 622 symmetry (Figure S7A). We also did a SAXS-based shape reconstruction for the M. musculus CaMKIIα holoenzyme (Figure S7B) that was generally very similar to that of the C. elegans holoenzyme. As a further control, we also carried out a shape reconstruction for the mouse CaMKIIα association domain (residues 334–472), for which the crystal structure is known (Hoelz et al., 2003). The shape reconstruction, obtained without imposing any constraints of symmetry, shows satisfactory agreement with the crystal structure (Figure S7C).

Speculation Regarding Holoenzyme Activation
One of the most intriguing properties of CaMKII is its ability to respond to Ca^{2+} signals in a manner that depends on the frequency with which Ca^{2+} levels rise and fall (De Koninck and Schulman, 1998). When the frequency of Ca^{2+} pulses is low, the kinase activity of CaMKII directly tracks the concentration of Ca^{2+}. When the frequency of Ca^{2+} pulses is increased, there is a remarkable change in the behavior of the enzyme, and it acquires constitutive activity due to transautophosphorylation on Thr 286 (Hudmon and Schulman, 2002).

Transautophosphorylation of Thr 286, which occurs within one holoenzyme, requires both the phosphorylating kinase subunit and the “substrate” kinase subunit to be bound to Ca^{2+}/CaM (Bradshaw et al., 2002; Hanson et al., 1994; Rich and Schulman, 1998). In order for the holoenzyme to be sensitive to the frequency and not just the amplitude of Ca^{2+} pulses, there has to be a delay between the first activation event (the binding of Ca^{2+}/CaM to one regulatory segment) and the activation of a second kinase domain (Hudmon and Schulman, 2002). Schulman and coworkers have posited that this delay arises from the greater probability of the second activation event occurring at a more distantly located kinase domain within the holoenzyme rather than an adjacent one, thereby considering the holoenzyme to be a “coincidence detector” for Ca^{2+}/CaM binding. This model is consistent with experiments that show noncooperative acquisition of substrate-directed kinase activity as
Figure 5. Rigid-Body Modeling Scheme for SAXS Analysis
Six autoinhibited kinase-domain dimers were placed around a central association domain as described in the text. The kinases were separated from one another in steps of 5 Å (this variable was defined as “kinase displacement”) and the theoretical solution X-ray scattering was calculated for each resulting model.

(A) A value of kinase displacement equal to 0 Å, corresponding to a model where the autoinhibited kinase domains are in the dimer seen in the crystal structure. The resulting model is a disc with a diameter of ~200 Å and a height of ~60 Å.

(B) A value of kinase displacement equal to 100 Å resulting in a model with diameter of ~200 Å and a height of ~200 Å.

(C) As the value of kinase displacement increases, the calculated Rg diverges sharply from the experimental value of ~72 Å.

(D) The rings of autoinhibited kinase domains were moved above and below the association domains while simultaneously shrinking the radius of the kinase rings to generate a series of models with essentially equivalent Rg values (matched to the experimental value). The different models can all be described by a single variable, θ, that represents the angle between the midplane of the association domain and a vector connecting the center of an association-domain dimer and the center of mass of the autoinhibited kinase domain.

(E) Theoretical X-ray scattering curves were calculated for models corresponding to different values of θ. At a value of θ equal to 0, corresponding to a model in which the individual autoinhibited kinase domains are held together as dimer pairs in an outer ring that is coplanar with the central plane, the curve approximates the actual data much better. This is quantified in (F) where the χ² statistic calculated by the program Crysol (Svergun et al., 1995), which compares the calculated scattering curve to the experimental one, is optimal at θ = 0.
a function of CaM concentration (Bradshaw et al., 2003). On the other hand, we show here that Ca\(^{2+}\)/CaM binds to the CaMKII holoenzyme with an apparent Hill coefficient of \(\frac{1}{2}\) (see also Gaertner et al. [2004]). If the dimer is the fundamental unit of the holoenzyme assembly, it is very likely that once Ca\(^{2+}\)/CaM has bound to one autoinhibited kinase domain, the next binding event will occur within the same dimer pair and not at a more distantly located one. Such a process, if unconstrained, would generate pairs of activated kinase domains that would be free to phosphorylate each other immediately.

We have considered whether there are elements to the structure of the holoenzyme that may bring about a delay in transautophosphorylation after the initial binding of Ca\(^{2+}\)/CaM. If the dimer is the fundamental unit of the holoenzyme assembly, it is very likely that once Ca\(^{2+}\)/CaM has bound to one autoinhibited kinase domain, the next binding event will occur within the same dimer pair and not at a more distantly located one. Such a process, if unconstrained, would generate pairs of activated kinase domains that would be free to phosphorylate each other immediately.

We have considered whether there are elements to the structure of the holoenzyme that may bring about a delay in transautophosphorylation after the initial binding of Ca\(^{2+}\)/CaM. If Ca\(^{2+}\)/CaM binding were to separate the two kinase domains in a dimer pair above and below the midplane of the association domains, as suggested by some of the electron microscopic reconstructions (Kolodziej et al., 2000), then transphosphorylation might require adjacent kinase dimers to be activated, so that kinase domains located on the same side of the midplane can reach each other. This kind of mechanism might enable the holoenzyme to serve as a coincidence detector as proposed by Schulman and co-workers, even though two Ca\(^{2+}\)/CaM bind cooperatively to each kinase dimer.

The connection between the helical regulatory segment of the kinase domain and the first helix of the association domain is almost certainly flexible, as indicated by the sequence and by the location of alternative splice sites at this junction (Figure S1). The outer surface of the association domain, which is mainly negatively charged, has a localized region of positive charge located alongside the edge of the N-terminal \(\alpha\) helix of the association domain (Figure 7B, inset). The residues that form this positively charged patch (Arg 371, Arg 453, and Arg 461 in the \textit{C. elegans} CaMKII association domain) are conserved (Figure S1). The linker segment that leads into the N-terminal \(\alpha\) helix of the association domain contains 3 to 4 acidic residues that are also conserved (Figure S1). These residues are either disordered or have variable structure in the association domains and serve no obvious structural function.

We speculate that this negatively charged linker region could fold back onto the surface of the association domain when the kinase is activated and thereby interact with the positively charged patch, which is located close to the connection point of the linker. Such an interaction would result in
the separation of the two kinase domains from a dimer pair above and below the midplane of the association domain upon activation (Figure 7B). Such separation of adjacent kinase domains would generate an activated holoenzyme assembly that bears similarity to the electron microscopic reconstructions of Waxham and coworkers (Gaertner et al., 2004), as shown schematically (Figure 7C).

SAXS data for mouse CaMKIIα holoenzyme measured in the presence and absence of Ca2+/CaM show that the radius of gyration increases from 72.15 ± 0.06 Å (maximum diameter of 235 Å) to 90.48 ± 0.06 Å (maximum diameter of 260 Å) upon the addition of Ca2+/CaM (Figures 7D and 7E). We interpret the ~18 Å increase in the radius of gyration upon the addition of Ca2+/CaM to represent the release of the kinase domains from the dimeric assembly and their movement away from the centrally docked positions. These results do not allow us to build a meaningful model of the activated state of the holoenzyme, but such a dramatic change in conformation may have an effect on the binding of the many proteins that interact with CaMKII in the postsynaptic density.

Figure 7. Speculation Regarding the Activation of CaMKII by Ca2+/CaM
(A) A schematic diagram of the holoenzyme in its fully autoinhibited form.
(B) Ca2+/CaM binds to a regulatory segment of a kinase dimer, releasing the other regulatory segment to bind a second Ca2+/CaM. Release of the dimer pair reveals a basic patch, shown inset with the electrostatic surface overlaid on the structure. This basic patch may then interact with an acidic region on the linker, directing the kinase domains above and below the midplane of the association domain.
(C) When an adjacent autoinhibited kinase dimer binds to two Ca2+/CaM, the kinase domains will again be directed above and below the midplane. They will now encounter the previously activated kinase domains, and transphosphorylation of Thr 286 can occur.
(D) The addition of Ca2+/CaM to CaMKII causes a change in the shape of the solution SAXS curve. The intensity of the curve without Ca2+/CaM was multiplied by 1.7 so as to overlay the graphs. The Guinier region, shown as an inset, is linear for both curves in a region of s*Rg < 1.3. By fitting the Guinier equation (with the program PRIMUS), the value of Rg was determined to be 71.8 ± 0.2 without Ca2+/CaM and 97.5 ± 0.4 when Ca2+/CaM is added. The presence of the linear Guinier region in the s*Rg region < 1.3 indicates that the samples are not aggregated.
(E) The P(r) function, as calculated by the program GNOM (Svergun, 1992), for CaMKII with and without the addition of Ca2+/CaM.
Conclusions
Our structure of the autoinhibited kinase domain of CaMKII is quite different from those of monomeric Ca\(^{2+}\)/CaM-activated enzymes, and one unexpected aspect is the formation of a dimeric coiled-coil strut by the CaM-responsive regulatory segments. The architecture of the dimer is such that the intrinsically active kinase domains are held apart in a way that requires Ca\(^{2+}\)/CaM for transphosphorylation and the acquisition of "memory." The organization of the dimer most likely reflects an evolutionary solution to the problem of preventing accidental transautophosphorylation and the acquisition of "memory." The organization of the kinase domains above and below the midplane of the assembly after the activation of a dimer may provide a mechanism for delaying the onset of transautophosphorylation until an adjacent dimer is activated, and this has interesting consequences for the mechanism by which CaMKII can sense the frequency of Ca\(^{2+}\) pulses.

The results presented here add to the evidence that CaMKII holoenzyme is an intricately controlled signaling switch that can respond in a concerted manner to stimulation by Ca\(^{2+}\). We await further high-resolution analysis of the holoenzyme assembly, which will reveal the precise connections between the association domains and the autoinhibited kinase domains that allow the molecule to develop a chemical memory that depends on the temporal properties of the Ca\(^{2+}\) stimulus.

EXPERIMENTAL PROCEDURES

Protein Expression and Purification
DNA encoding residues 1–340 of C. elegans CaMKII (unc-43) was subcloned into pET-28 (Novagen) modified to contain a PreScission Protease site between the N-terminal 6-histidine tag and the coding sequence. Aspartate 135 was mutated to Asparagine as above. The protein was expressed and purified as described in the pFastBac-1 plasmid modified to contain a C-terminal, 6-histidine tag. Aspartate 135 was mutated to Asparagine as above. The protein was expressed and purified as described for the C. elegans full-length protein except that an additional nickel affinity column was added after the SP column. The final buffer from the gel filtration was 20 mM Tris (pH 8.3), 200 mM KCl, 5% glycerol.

Gallus gallus CaM was expressed using a pET-15b vector. Lysine 75 was mutated to Cysteine as above. Purification and labeling with IAEANS fluorophore were performed as described (Putkey and Waxham, 1996).

The association domain of M. musculus CaMKII (residues 336–478) was expressed and purified as described (Hoelz et al., 2003).

Crystallization and Structure Determination
The C. elegans autoinhibited kinase domain was concentrated to 1.03 mM and mixed with an equal amount of 1.6 M sodium malonate (pH 7.0) on a coverslip. 1.5% 1,2,3-heptanetriol was added directly to the drop, and the drop was equilibrated with a reservoir of 1.6 M sodium malonate. The crystals (space group P2\(_1\); a = 46.1 Å, b = 77.1 Å, c = 119.5 Å, β = 96.7°) grew to their full size of 0.100 × 0.200 × 0.40 mm\(^3\) within 24 hr. The crystals were transferred to 1.6 M sodium-malonate, 20% glycerol, and then flash frozen in liquid nitrogen and used for X-ray data collection (Advanced Light Source [ALS], Beamline 8.2.2). X-ray data were processed using HKL2000 (Otwinowski and Minor, 1997).

The structure was solved by molecular replacement using Phaser (McCoy et al., 2005), with phosphorylase kinase (2phk) as the search model (Lowe et al., 1997). All models were refined using the programs CNS (Brnger et al., 1998) and O (Kleywegt and Jones, 1996). The final structure was refined to 1.8 Å resolution (R\(_{free}\) and R\(_{work}\) are 0.236 and 0.216, respectively; Table S1). The model consists of residues 5 to 315 and 9 to 318 in molecules A and B, respectively, and 447 water molecules.

Structural figures were prepared with the program PyMOL (DeLano, 2002). Maps of electrostatic surfaces were calculated using GRASP (Nicholls et al., 1991).

Molecular Dynamics
Molecular dynamics simulations were carried out using periodic boundary conditions with a truncated octahedral geometry and water extending a minimum of 10 Å beyond the protein. The net charge on the dimer system was neutralized by the addition of 5 Cl\(^-\) ions. The kinase with regulatory segment was neutralized by addition of 2 Cl\(^-\) ions. The kinase without the regulatory segment was neutralized by the addition of 4 K\(^+\) ions. The simulations were carried out using the Sander module of AMBER 8.0 (Case et al., 2004, University of California, San Francisco) using 10 xenon processors on an IBM X series 345 cluster, essentially as described for the Sckinases (Young et al., 2001).

Binding Experiments
The binding experiments were carried out as described by Waxham and coworkers (Gaertner et al., 2004) using a Spex Jobin Yvon FluoroMax-3 fluorometer with a Peltier-temperature controlled sample chamber at 25°C. Excitation and emission slit bandpass was set at 5 nm. We noted marked photobleaching during the course of the experiment and corrected for this empirically. All curves were measured in triplicate. The data were normalized such that maximal binding for each experiment was equal to 1. The binding curves were plotted and analyzed using the program Prism (version 4, GraphPad Software). The data was fit to the Hill equation

\[
Y = Y_{\text{min}} + \frac{(Y_{\text{max}} - Y_{\text{min}})}{1 + \left(\frac{[S]}{K_{d}}\right)^n}
\]
where Y is the fraction bound as measured by relative fluorescence intensity, EC_{50} is the concentration at half maximal binding, $[L]$ is the log of the concentration of kinase, and n is the apparent Hill coefficient.

Small-Angle X-Ray Scattering (SAXS)

SAXS data for the CaM binding experiments and the *M. musculus* holoenzyme shape reconstruction were measured at the SIBYLS beamline at ALS using a Mar 165 CCD area detector (165 mm diameter). A 15 µl sample was placed in a 1 mm thick chamber with two windows of 25 µm Mica. The detector to sample distance was 1.5 m. A single-crystal monochromator was used with an energy of 10 keV ($\lambda = 1.298 \AA$). The curves were measured at concentrations of 35 mg/ml, 17.5 mg/ml, and 8.25 mg/ml, and there was no evidence for aggregation at higher concentrations. The R_c was approximated using PRIMUS (Kovnarev et al., 2003) to evaluate the Guinier equation and GNOM (Svergun, 1992) to evaluate the Pr function. The value of the maximum diameter of the particle, D_{max}, was determined empirically by examining the quality of the fit to the experimental data for a range of D_{max} values. The R_c given by both methods was in good agreement, although dependent on the choice of the initial parameters (in both cases). A consensus value of 72 Å was used in the rigid body modeling.

For the CaM binding experiments, the mouse holoenzyme was diluted to 35 µM in 200 mM Tris (pH 8), 200 mM KCl, 2 mM CaCl$_2$, and 5% glycerol. The protein was divided into two samples; to one was added 35 µM CaM and to the other was added an equivalent amount of buffer. Five 1 s exposures were taken for each sample and for the buffer control.

Structures for the rigid body modeling of the SAXS data were generated using the program PyMOL. The R_c value for each model was calculated using the program package Cysolv (Svergun et al., 1995) and compared to the experimentally determined scattering curve for the *C. elegans* holoenzyme construct for Q values between 0.01039 and 0.2612 Å$^{-1}$. R_c by both methods was in good agreement, although dependent on the choice of the initial parameters (in both cases). A consensus value of 72 Å was used in the rigid body modeling.

REFERENCES

Published: December 1, 2005

Received: August 9, 2005

Revised: October 2, 2005

Accepted: October 19, 2005

Accession Numbers

The coordinates for the crystal structure of the autoinhibited kinase domain from C. elegans CaMKII is deposited in the Protein Data Bank with the ID 2BDW. Please note that the numbering of the residues in the PDB file has been changed so that it corresponds to the numbering in the mouse CaMKII isoform.